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Abstract

The traditional, serial, algorithm for finding the strongly connected components in a graph is based on depth first search and has
complexity which is linear in the size of the graph. Depth first search is difficult to parallelize, which creates a need for a different
parallel algorithm for this problem. We describe the implementation of a recently proposed parallel algorithm that finds strongly connected
components in distributed graphs, and discuss how it is used in a radiation transport solver.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

A strongly connected component (SCC) of a directed
graph is a maximal subset of vertices in which there is a
directed path from any vertex to any other. A cycle in a di-
rected graph is a path that is simple except that the first and
final vertices are the same. Although the number of cycles
in a graph can be exponential in the number of vertices, the
number of SCCs is at most linear in the number of vertices,
since no vertex can be in more than one SCC. For our pur-
poses we will only consider a subset of vertices to be an
SCC if it has more than one vertex.

Tarjan’s classic serial algorithm for detection of SCCs
runs linearly with respect to the number of edges and uses
depth-first search [17]. However, depth-first search is known
to be difficult to parallelize—the special case of lexicograph-
ical depth first search is P-Complete [10,16], which in prac-
tical terms means it is unlikely that a scalable parallel algo-
rithm exists.
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There are some parallel algorithms for detecting SCCs
that do not rely on depth first search. Gazit and Miller have
an NC algorithm which can be used for locating SCCs that
use matrix multiplication[7]. Vishkin and Cole [5] and Am-
ato [1] have proposed optimizations or extensions of this
algorithm, but they still requireO(n2.376) processors and
O(log2 n) time wheren is the number of vertices in the
graph. A more complicated NC algorithm developed by Kao
for planar graphs requiresO(log3 n) time andn/ log n pro-
cessors [9]. Another parallel algorithm for planar graphs is
due to Bader [2], but our applications are non-planar, arising
from graphs associated with finite element mesh represen-
tations of 3-D domains.

In this paper we describe our modification of a recently
proposed algorithm due to Fleischer et al. [6] and our parallel
implementation of it in MPI. The Fleischer et al. algorithm,
called DCSC fordivide-and-conquer strong componentsis
a recursive, divide-and-conquer approach that does not rely
on depth first search. As shown in [6], its expected serial
runtime isO(m log n), wherem is the number of edges and
n is the number of vertices in the graph. We describe the
DCSC algorithm and our modifications to it in §2. We then
present details of our parallel implementation in §3. In §4
we quantify the performance of our approach by presenting
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Fig. 1. (a) An unstructured finite-element mesh (left) and its associated
acyclic dependence graph for the angle shown (right). (b) A twisted ring
of mesh elements that induces a cycle for the shown angle (left), and its
dependence graph for the angle shown (right). A sweeping method will
deadlock when it encounters a cycle such as this.

experimental results obtained on two different machines:
CPlant, a 1700 processor DEC Alpha commodity cluster
and ASCI Red, a 9280 processor Intel supercomputer. Both
machines are located at Sandia National Laboratories.

The motivation for this work is a computational code for
solving radiation transport on 3D unstructured finite element
grids. The model of radiation transport solver we have se-
lected for this work solves the transport equations using a
sweepmethod. Sweeping methods used in radiation trans-
port discretize the radiation field by angle, and flux propaga-
tion is computed for a set of discrete directions or ordinates.
The computation for each angle is performed by sweeping
the flux across a grid, i.e., a finite element mesh. Radiation
enters a mesh cell via faces whose outward normals point
upwind, and exits through downwind faces. This implies an
order of computation on the grid cells which, for a single
ordinate direction, is represented as a directed dependence
graph (DDG). Two example meshes and their associated de-
pendence graphs for a particular angle are shown in Fig.1.

Each of the (typically several hundred) ordinate directions
induces an associated dependence graph. Sweeping methods
will deadlock if any of the dependence graphs contains a
cycle, such as the one in the dependence graph for the twisted
grid shown in Fig. 1(b). Such situations are not uncommon
in 3-D unstructured grids and in Lagrangian simulations
where the underlying discretized object (the mesh) deforms
over time. To avoid deadlock, cycles in the set of ordinate
dependence graphs must be detected and broken before the

sweep can be performed. Since the mesh elements (vertices
of the dependence graph) are distributed across processors,
a key step in parallelizing transport sweeps is a scalable
parallel algorithm for cycle detection.

2. The modified DCSC algorithm

The main idea of the DCSC algorithm for strongly con-
nected components is to recursively partition the directed
graphG = (V , E) in such a way that any SCCs will be en-
tirely contained within a single partition. Each recursive step
in DCSC begins with the selection of a randompivot vertex
v. Next, the algorithm findsPred(G, v), the set ofpredeces-
sorsof v, which are all the vertices which can reachv by a
directed path of edges. Similarly, it findsDesc(G, v), the set
of descendantsof v, the vertices that can be reached fromv

by a directed path of edges. All vertices which are not prede-
cessors or descendants are in theremainderset,Rem(G, v).
The partitioning is based on the following lemma[6].

Lemma 1. TheuniqueSCCcontainingv inG isPred(G,v)∩
Desc(G, v). Moreover, any other SCC of G is a subset
of Pred(G, v), a subset of Desc(G, v), or a subset of
Rem(G, v).

With this lemma, the graph is broken into three disjoint
pieces, and the algorithm is applied recursively to each piece.
The recursion stops when partitions contain zero or one ver-
tex. The expected serial complexity of DCSC is shown in
[6] to beO(m log n).

The DCSC algorithm is amenable to parallelism in two
ways. First, each recursion generates a set of up to three in-
dependent problems which can be analyzed independently.
Second, the principle computational step is the search for
ancestors and descendants which is like a topological traver-
sal of the graphs. This type of traversal has much more
parallelism [15] than depth-first search used in Tarjan’s al-
gorithm. But this parallelism comes at the cost of an extra
factor of logn in the run time. In addition, in the radiation
transport applications which motivated our work, multiple
directed graphs on the same nodal set need to be analyzed
for cycles simultaneously. This provides yet more scope for
parallelism as will be discussed further in §3.1.

The radiation transport applications of interest to us gen-
erally have few SCCs. By efficiently eliminating portions of
the graph without SCCs, we can reduce the size of a problem
before invoking DCSC and so improve overall performance.
Our algorithm to do this, which we call ModifiedDCSC, is
outlined in Fig. 2. Steps (6)–(11) comprise the DCSC al-
gorithm, but in our approach we perform atrim step at the
beginning of each iteration which tries to reduce the size
of the graph that must be processed by eliminating vertices
which cannot be part of an SCC. The forward and back-
ward trim steps involvetopological traversalsof the graph.
The forward trim begins with all vertices with no ancestors
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Fig. 2. ModifiedDCSC algorithm.

and removes them and all their edges. After their removal,
some other vertices may now have no ancestors and they
are removed. The process continues until no more vertices
can be removed. Vertices that are part of an SCC will not be
eliminated during a trim due to the nature of the topological
traversal. The reverse trim performs the same operation from
the other end of the graph. All vertices with no descendants
are removed recursively. These two trim operations can be
performed inO(m) serial time. If the graph has no SCCs
then all the vertices will be removed in the forward trim. It
is worth noting that the trim operation exactly mimics the
steps in a transport sweep. But in our case instead of simu-
lating radiation, we merely note whether or not a given cell
can receive all the data it needs for its computation.

We say that vertices that are reachable from a SCC are
contained in theshadowof the SCC. The forward trim of
G removes all vertices fromV that are not contained in
SCCs or in the forward shadow of some SCC. The reverse
trim also produces a shadow in the reverse direction. The
intersection of these two shadows, which we call thedark
shadowis then partitioned via a single level of the DCSC
algorithm.

Fig.2(a) illustrates how the forward and reverse trim steps
remove nodes which are neither a part of nor are dependent
on a SCC. A more abstract view is shown in Fig. 3(a). If
the reverse trim encounters another SCC within the shadow
of the forward trim, a second shadow will be cast by this
SCC into the previous shadow. The resulting dark shadow
contains the vertices ofG that must be further processed.
The effectiveness of trimming the DDG is dependent on
how close the SCCs are to the starting points of the forward
and reverse topological traversals (vertices with in-degree or
out-degree zero, respectively). If we encounter a SCC early
in the traversal, the shadow will be large, thus reducing the
effectiveness of the trim.

The partitioning of the dark shadow into disjoint regions
is illustrated in Fig. 3(b). An example of this partitioning on
an actual dependence graph is shown in Fig. 2(b), where the
graph is partitioned into three subgraphs that do not share

(b)(a)

cycles
dark shadow

pivot

predecessors

successors

Fig. 3. (a) An abstract 2D mesh containing two SCCs (the circular rings).
The TRIM steps remove the white regions, leaving the dark shadow
(shaded). (b) The dark shadow is partitioned around the pivot intoPred,
Desc, andRemsets by the MARK step.

any SCCs. Fig.2(c) and (d) show two more iterations of
ModifiedDCSC where the graphs are reduced to SCCs.

The dark shadow is then partitioned by amarkingstep.
The marking algorithm proceeds as topological traversals of
G, originating from a single vertex inG we call the pivot,v.
There are two traversals, one which follows forward edges
from v marking all vertices that arereachable fromv, and
one that follows edges backwards to mark all verticesfrom
whichv is reachable. The topological nature of this traversal
allows for parallelism in the same manner as in trimming.

After marking is complete, the nodes that are both pre-
decessors and descendants comprise the SCC containingv.
The pivotv, and any SCC containing it, are extracted from
the graph, partitioning it into three disjoint subgraphs con-
taining Pred(G, v), Desc(G, v), andRem(G, v). The key
observation of [6] is that any SCCs remaining in the graph
will be wholly contained within one of these regions. Thus
we can call ModifiedDCSC recursively on each of the 3 new
graphs. The recursion stops when all subgraphs contain one
or fewer vertices.

3. Implementation

In serial, the ModifiedDCSC algorithm outlined in Fig. 2
is straightforward to implement. The principle computa-
tional steps are the trim operations (a topological traversal of
the graph) and the mark operations (determination of ances-
tors and descendants). Each of these graph operations can
be performed efficiently using a task queue. For the forward
trim, begin by placing all the vertices with no ancestors in a
queue of tasks. Now remove a vertex from the queue, delete
it from the graph and decrement the ancestor count of all
the vertices it points to. If any of these vertices now have no
ancestors, add them to the queue. When the queue is empty,
the trim step is finished. The backward trim is closely anal-
ogous but with descendants and ancestors flipped.

A similar approach works for the descendant (and ances-
tor) determinations in the mark phase. Initially, the pivot
vertex is marked and placed in a task queue. Now vertices
are removed from the task queue one at a time, and all of
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their unmarked children (or parents) are added to the task
queue. The process continues until the task queue becomes
empty. In this way, all the trim and mark operations in a
single level of recursion can be performed inO(m) time.

We have implemented a parallel version of the Modified-
DCSC algorithm in C with MPI. Our code takes as input a
distributed finite element grid and a list of ordinates direc-
tions (angles). From this, we generate an independent DDG
for each ordinate. This is done by letting each vertex cor-
respond to a finite element, and each edge corresponds to a
face shared between two adjacent finite elements. The edge
is directed according to the direction in which the ordinate
angle passes through the face. This manner of construction
results in a set of DDGs that have the same set of ver-
tices as well. A particular vertex or edge is owned by the
same processor in all graphs—the distribution of all graphs
comes from the distribution of the mesh across processors.
The edges are directeddifferently for each DDG resulting
in different graphs and consequently different SCCs. Each
DDG is fully distributed across all the processors. Since all
graphs are fully distributed, we gain additional parallelism
by finding the SCCs in each DDG simultaneously.

Vertices on processor boundaries have access to ghost
nodes, which store information about the vertex on the
neighboring processor. Such information includes the pro-
cessor ID of the owning processor, location of the ghost
node in that processor’s data structure, as well as marking
and trimming status of the ghost node.

We should note that conceptually the forward and back-
ward trims are separated as in Fig.2 but they can be per-
formed simultaneously. The implementation of ModifiedD-
CSC performs its trimming in this manner, starting from
both ends and working towards the middle of each DDG.

Parallelization of the ModifiedDCSC algorithm for dis-
tributed graphs in which SCCs may span multiple proces-
sors raises a number of algorithmic and software challenges
as discussed in the following subsections.

3.1. Simultaneous work on multiple problem instances

The divide-and-conquer nature of ModifiedDCSC allows
us to exploit additional parallelism on multiple problem in-
stances. There are basically two cases of this which we can
make note of (1) multiple subgraphs from each recursion,
and (2) many angles which are processed in a radiation trans-
port simulation.

First, each recursive call to ModifiedDCSC will divide
every graph into subgraphs based on the results from ver-
tex marking. Since these graphs cannot share any SCCs
(Lemma 1) they are treated as independent problems. Each
graph containing SCCs generates up to three recursive sub-
problems as indicated in steps (9)–(11) of Fig. 2. In our
parallel implementation all subproblems for all the differ-
ent graphs are placed into the list of graphs for subsequent
recursion.

Second, recall that in the radiation transport application,
for which our code was developed, we need to search for
SCCs in a set of directed graphs corresponding to different
ordinates. In serial, there is no reason not to work on each
graph in succession. But in parallel, solving each graph in
succession is not the best method because it would add un-
necessary overhead from termination detection, etc. Also,
each of these graphs will partition differently due to ran-
domization in pivot selection as well as differences in graph
structures, so as recursion continues we gain parallelism by
having a better overall distribution of work across proces-
sors. Searching all graphs simultaneously also reduces idle
time.

In parallel, the trim and mark steps for a particular ordi-
nate will generally enable simultaneous activity by only a
subset of processors. By working on all the graphs simulta-
neously, we can keep more processors busy and, so, get im-
proved overall performance. Our implementation continues
to follow the approach sketched in Fig.2, but now the trim
and mark steps are done on all graphs concurrently. Also, as
ModifiedDCSC recurses and divides each graph into smaller
partitions we treat each one as an independent graph. This
allows us to treat partitions exactly the same as input graph
and thus search them concurrently as well. This complicates
the code since interprocessor messages and elements in the
task queue must include an indication of which graph they
are associated with.

One complication of doing this is that at a given level of
recursion, there can be many subgraphs in the system from
each angle being treated as independent graphs. We label
every graph with the twograph idtags. This first tag is used
to identify the graph in its original context. The second tag
is unique for every subgraph produced via recursive parti-
tioning.

3.2. Termination detection

The trim and marking steps in ModifiedDCSC must have
some way of determining when they have completed all
the work that is possible for a given graph or subgraph.
We cannot know a-priori how much ofG that a TRIM or
MARK will visit and thus were required to add some form
of termination detection to those routines.

Due to the distributed nature of our systems and program-
ming models, each processor maintains its own task list that
stores the vertices which are stored on that processor and
have no unsatisfied dependencies. In the case where a ver-
tex needs to be added to a task list on another processor (or
have its ancestor count decremented), we send a message to
the relevant processor. The processor that owns the vertex
will then decrement its ancestor count. If the ancestor count
equals zero then the processor will add the vertex to its own
task list. This precisely mimics the parallelization of trans-
port sweeps as described by Plimpton et al. [13]. The more
subtle challenge is determining when a trim or mark step is
completed.
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Simply checking the task list for emptiness is not sufficient
to determine if that processor has no work left to do. It may
yet receive a message from another processor telling it to
decrement a vertex’s ancestor count. If that vertex’s ancestor
count becomes zero, then it is added to the task list. We
cannot rely on a count of all vertices visited since we do
not know how many might be visited during a particular
phase. We can only terminate a MARK or TRIM operation
when all processors have empty task lists and there are no
messages in transit that could generate new work. Because
of this, we must determine when there is no more work left
using adistributed termination detectionalgorithm.

Our first implementation of ModifiedDCSC using a to-
ken ring method. Unfortunately, while relatively simple, that
method is not scalable so we have since replaced it with
a more scalable technique. The current implementation of
ModifiedDCSC uses a binary tree topology for sending ter-
mination detection messages and is similar to the approach
of Baker et al.[3] and requires onlyO(log P) time where
P is the number of processors.

This binary tree implementation sets up each processor as
a node in a binary tree topology. Termination only occurs
when all processors have empty task lists and there are no
unreceived messages still in transit, and no new work has
been performed since the last check. First messages proceed
up the tree, sending the ongoing count of sends and receives
as well as a count of the total work for each subtree.

When the root node (processor 0) receives a message from
both of its children, it compares the counts against the ter-
mination condition and it checks that the work count is un-
changed. If these conditions are not met, the root node saves
the work count and sends a DOWN message to each of its
children.

Upon receipt of a DOWN message, each node forwards
it on to their children until the DOWN messages reach the
leaves. A leaf will change state from DOWN to UP and will
send a message to its parent when it has no more work to
do locally. This process detects termination after two passes
through the binary tree and will addO(log P) time to the
end of a TRIM or MARK calculation.

4. Experimental results

We conducted a series of experiments to illustrate the per-
formance characteristics of ModifiedDCSC on two different
parallel architectures. The first system used is the Intel Ter-
aFLOPS (ASCI Red) supercomputer [11] at Sandia National
Laboratories. It is a massively parallel distributed memory
computer consisting of 4640 nodes with 2 Intel Pentium Pro
333 MHz processors per node, or 9280 processors in total.
Each processor has 32 KB L1 and a 512 KB L2 cache and
256 MB per node. ASCI Red uses proprietary message pass-
ing hardware with 610 MB/sec bandwidth and 15�s latency.

The second system we used for gathering experimental
data is the CPlant [4] cluster at Sandia National Labora-

tories. The CPlant machine is a commodity cluster built
with 500 MHz DEC-Alpha processors. Each processor has
256 MB RAM and uses Myrinet interconnect (100 MB/s,
60�s latency).

Our particular implementation of ModifiedDCSC was for
graphs that arise from mapping the dependencies between
cells in finite element meshes for use in scientific calcula-
tions which solve problems via sweeping methods[14,12].
The meshes we used in our tests are made up of hexahedral
cells, with each cell defined by 8 corner nodes. The corre-
sponding graph substitutes a vertex for each cell and inserts
an edge between two vertices if their corresponding cells
share a face. The edge is directed according to the relation-
ship between the angle in question and the outward face nor-
mal of the corresponding cells. Our implementation takes
advantage of the properties of the particular input types re-
lationship to 3D finite element meshes for sweep-based ra-
diation transport codes. Specifically, we start with multiple
instances of each graph, each with edges directed to align
with a particular angle.

We used two geometries for our experiments, which are
illustrated in Fig. 4. The first mesh is a rectangular grid
which is deformed by randomly perturbing the location of
the corner nodes of each cell. The magnitude of the ran-
dom displacement is bounded by a specified percentage of
the original inter-node distance. As the magnitude of corner
displacement is increased we expect that more SCCs will be
produced, and should be evenly distributed throughout the
graph.

The second geometry is a cylindrical mesh consisting of
concentric stacked rings which are then twisted to produce
SCCs. This geometry creates SCCs in graphs generated from
ordinate directions nearly parallel to the cylindrical axis of
the mesh. We have illustrated this in Fig. 1(b) where we
have a single twisted mesh that produces a graph with an
SCC (Fig. 5).

These two input mesh types were selected to provide in-
sight into how the performance of ModifiedDCSC is influ-
enced by different graph characteristics. The twisted cylin-
der has very large SCCs, while the deformed cube has very
many SCCs. Thus, we consider them to represent the ex-
tremes of the spectrum of possible scenarios within radiation
transport applications. For parallel execution, all the grids
were prepartitioned using the multilevel KL algorithm in the
Chaco tool [8].

4.1. Graph trimming

The purpose of this experiment is to show the impact of
the TRIM addition to the original DCSC algorithm. With
the TRIM step turned off, we essentially have the DCSC
algorithm. For this experiment, we measured the execution
time taken by DCSC and ModifiedDCSC to detect the SCCs
for the rectangular mesh at 30% deformation.

Fig. 6 shows a comparison of execution time on a rect-
angular mesh with trimming enabled and disabled. We can
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Forward Trim

Backward Trim (b)(a)

Successors

Remainder

Predecessors

Remainder

Trimmed

(c)

Predecessors

Successors

(d)

Fig. 4. Example graph being trimmed in (a) by forward and backward trims. Part (b) shows the predecessor, descendant, and remainder markings of the
resulting dark shadow for the selected pivot (the solid vertex). Parts (c) and (d) show the subgraphs as they are reduced to strongly connected components.

Fig. 5. Two grids used for testing the strongly connected component
detection: (a) a rectangular mesh where the corner point of each cell
is displaced by a random amount; (b) a hollow cylinder with the grid
twisted along the vertical axis.
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Fig. 6. Effects of TRIM on execution time of ModifiedDCSC.

see that the addition of vertex trimming to the DCSC al-
gorithm results in nearly an order of magnitude reduction
in execution time for this mesh type. This confirms that

trimming offers a significant performance improvement
over the untrimmed version (DCSC) for meshes with sparse
SCCs.

4.2. SCC count

In this experiment, we studied the effect of increasing the
deformation in a rectangular mesh. The number of proces-
sors was held constant at 16 for this experiment, varying only
the magnitude of corner-node displacement in our meshes
as a percentage of the distance to the nearest node. As il-
lustrated in Fig.7(a), the number of SCCs grows rapidly
with the amount of deformation. Fig. 7(b), shows that the
execution time also grows with the number of SCCs, albeit
less dramatically than the growth in the number of SCCs.
The reasons for this is that ModifiedDCSC is dependent on
thenumber of SCCssince only one SCC per graph is found
and removed per recursive iteration. Increasing the number
of SCCs will naturally increase the number of iterations re-
quired to find them all. There is a synchronization during
each recursive step of our implementation, so it follows that
our execution times will increase with the number of itera-
tions.

Because ModifiedDCSC partitions each graph into as
many as three independent subgraphs with each iteration,
and DCSC can only detect one SCC per graph per iteration,
the number of SCCs that can be found grows exponentially
with each additional iteration. Therefore, if the number of
SCCs grows exponentially, we should only observe a linear
growth in execution time due to additional overhead of each
additional iteration.

There is another factor to consider in this example as
well. Because this experiment holds the graph size constant
and increases the number of SCCs present, we can say that
thedensityof SCCs is increasing. By increasing the density
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Fig. 7. Effects of mesh deformation on SCC count (a), and execution time, (b).
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Fig. 8. Measured speedup on an unscaled rectangular mesh on ASCI Red. Speedup is superlinear to 16 processors due to cache effects and falls off after
128 processors because there is very little work per processor.

of SCCs inG, we also greatly reduce the effectiveness of
trimmingG.

4.3. Speedup test

We ran one experiment on ASCI Red where we measured
the speedup of ModifiedDCSC on fixed size mesh. This
mesh size was 603 cells with the corner nodes perturbed
to a max of 60% of the distance to their nearest neighbor
corner nodes. This speedup is illustrated in Fig.8. In this
case, the performance increase has stalled out at around 128
processors. This is not unexpected because at this point there
is simply not enough work for each processor to overcome
the parallel overhead.

4.4. Scaled graphs

In this experiment, we investigated the behavior of Modi-
fiedDCSC on scaled size problems on both CPlant and ASCI

Red. For all tests, we set the graph size to 1000 vertices per
processor. The graphs in Figs.9 and 10 illustrate the execu-
tion times we will discuss in this section.

The first graph we look at is the twisted cylinder. In this
test, we scale the problem size with the number of proces-
sors, but the total number of SCCs remains constant. The
two cylinders tested with 0 and 10◦ of twist produced 0 and
40 SCCs, respectively, for all tests. As we can see in the
graphs of their execution times in Fig. 9, the cylinder with
zero cycles scaled very well to 1024 processors. For this
problem, the code need only perform a single TRIM for each
angle. When we add some cycles, the execution time begins
increasing noticeably around 64 processors. This is due pri-
marily to the increase in parallel overhead associated with
synchronization and termination detection. These effects,
though minimized, are magnified by the cumulative latency
of so many processors, and also by the fact that Modified-
DCSC has a relatively high communication to computation
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of SCCs is constant.
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Fig. 10. Execution times for the rectangular grids measured on ASCI Red and CPlant. Vertices scaled with 1000 vertices/processor. The density of SCCs
is constant for a given % deformation.

ratio. We incur additional overhead on graphs with many
SCCs since the number of recursive steps grows with the
number of SCCs. This growth is slow, but it does mean that
as we have graphs with more SCCs in total, we are likely
to encounter additional parallel overhead due to increased
recursive depth attained by the algorithm. This property is
the primary motivation in adding the TRIM phase to the al-
gorithm.

The second graph we performed scaled testing on is the
rectangular grid mesh. We applied scalability testing to three
different rectangular meshes; one with 0% deformation (no
SCCs), one with 30% deformation (moderate SCC), and
one with 40% deformation (more SCCs). Fig.10 shows the
execution times for ModifiedDCSC to solve these graphs
measured on ASCI Red and CPlant.

First note that unlike the twisted cylinder timings, even the
zero cycle instance shows significant runtime growth with
the number of processors. For the cylinder, the different or-
dinates enter the geometry in different places, and so many
processors can begin working immediately. For the rectan-
gular grid, all the angles enter at one of the eight corners,
and so as the number of processors grows the percentage of
initially idle processors grows as well.

Second, we see that it takes much more time to find all of
the SCCs for these graphs than it did for the graphs based on
cylindrical meshes. This is not unexpected because the SCC
densityis constant for a particular graph, therefore thenum-
ber of SCCsalso scales with problem size. So some growth
in runtime is expected from the observations in §4.2. How-
ever, the runtime here is also affected by additional parallel
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overhead because the number of recursive steps increased
as the number of SCCs increased. The combination of these
factors, along with the initial latency associated with a fixed
number of initially active processors, leads to the fairly sub-
stantial runtime growth on large numbers of processors.

However it is worth mentioning that the radiation trans-
port calculations that motivated our work will require many
hundreds or thousands of seconds for large computations on
many processors. So even this worst-case performance re-
sults in runtimes that are dominated by the physical simula-
tion (see, for example,[14]).

5. Conclusions

We described the implementation of a new parallel algo-
rithm, ModifiedDCSC, that finds strongly connected com-
ponents in direct graphs on distributed memory computers.
The traditional, serial, algorithm for finding the strongly con-
nected components in a graph,G(V, E), is based on depth
first search and hasO(|E| + |V |) complexity. Depth-first
search is difficult to parallelize, motivating the need for an
algorithm with more available parallelism.

Special consideration was given during development for
our specific application use in sweep calculations for radi-
ation transport in reducing work, etc. The ModifiedDCSC
algorithm is not, however, limited to these specific graphs
alone, although our experiments focused on a specific type
of graph due to the radiation transport application.

The performance of ModifiedDCSC is greatly affected by
the geometry and the number of SCCs in input graphs. As
demonstrated by our experimental results on different mesh
geometries. Since this algorithm is dominated by commu-
nication, scalability can be limited depending on the nature
of the graph that is being searched. We have shown the re-
sults from experiments on thousands of processors with rea-
sonable scalability for graphs we believe will occur in our
applications.

For radiation transport applications, the number of SCCs
generated on any given time step is expected to be low.
While in principle many SCCs can be generated cumula-
tively over many time steps, in practice remeshing is em-
ployed to improve the mesh geometry before the SCC count
gets very large. The execution time for ModifiedDCSC has
been shown to be much less than that of the numerical com-
putation it precedes [14].

Consequently, we consider our work to be the first practi-
cal parallel implementation of an algorithm to detect strongly
connected components for 3D graphs arising from finite el-
ement meshes. Though our particular implementation is re-
stricted to these graphs, the underlying algorithm is more
general.

6. Future work

From our experiences with ModifiedDCSC, we found that
it performs much better when there are large sections of the

graph that can be trimmed away. Unfortunately, some graphs
might have many SCCs distributed uniformly throughout the
mesh.

A hybridization of ModifiedDCSC could be made that
performs Tarjan’s serial algorithm on all processors indepen-
dently as a first step to detect the local SCCs. These SCCs
could then be collapsed into single nodes (supernodes). Fi-
nally, we could perform ModifiedDCSC on the remaining
graph with supernodes to handle the case where SCCs cross
processor boundaries.

This hybridization would benefit ModifiedDCSC in the
cases where we have many SCCs that are distributed evenly
throughout the graph because the serial Tarjan searches will
run fully independently and collapsing localized SCCs will
allow ModifiedDCSC trim them. Meshes that would benefit
the most from this hybridization will be those similar to
the graphs we obtained in our deformed rectangular mesh
experiments.
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